When the 3D Magnetic Laplacian Meets a Curved Edge in the Semiclassical Limit
نویسندگان
چکیده
We study the magnetic Laplacian in the case when the Neumann boundary contains an edge. We provide complete asymptotic expansions in powers of h of the low lying eigenpairs in the semiclassical limit h→ 0. In order to get our main result we establish a general method based on a normal form procedure, microlocal arguments, the Feshbach-Grushin reduction and the Born-Oppenheimer approximation.
منابع مشابه
Semiclassical Analysis with Vanishing Magnetic Fields
We analyze the 2D magnetic Laplacian in the semiclassical limit in the case when the magnetic field vanishes along a smooth curve. In particular, we prove local and microlocal estimates for the eigenfunctions and a complete asymptotic expansion of the eigenpairs in powers of h.
متن کاملFrom the Laplacian with variable magnetic field to the electric Laplacian in the semiclassical limit
We consider a twisted magnetic Laplacian with Neumann condition on a smooth and bounded domain of R2 in the semiclassical limit h → 0. Under generic assumptions, we prove that the eigenvalues admit a complete asymptotic expansion in powers of h1/4.
متن کاملThe model Magnetic Laplacian on wedges
We study a model Schrödinger operator with constant magnetic field on an infinite wedge with natural boundary conditions. This problem is related to the semiclassical magnetic Laplacian on 3d domains with edges. We show that the ground energy is lower than the one coming from the regular part of the wedge and is continuous with respect to the geometry. We provide an upper bound for the ground e...
متن کاملSemiclassical 3D Neumann Laplacian with variable magnetic field: a toy model
In this paper we investigate the semiclassical behavior of the lowest eigenvalues of a model Schrödinger operator with variable magnetic field. This work aims at proving an accurate asymptotic expansion for these eigenvalues, the corresponding upper bound being already proved in the general case. The present work also aims at establishing localization estimates for the attached eigenfunctions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 45 شماره
صفحات -
تاریخ انتشار 2013